Abstract:

A lattice gauge theory is a random assignments of spins to edges of a lattice that offers a more tractable model in which to study path integrals that appear in particle physics. We demonstrate the existence of a phase transition corresponding to deconfinement in a simplified model called Ising lattice gauge theory on the cubical lattice Z^3. Our methods involve studying the topology of a random 2-dimensional cubical complex on Z^3 called random-cluster plaquette percolation, which in turn can be reduced to the study of a random dual graph. This is based on joint work with Benjamin Schweinhart.