Abstract:

The fine curve graph of a surface was introduced by Bowden, Hensel and Webb. It is defined as the simplicial complex where vertices are essential simple closed curves in the surface and the edges are pairs of disjoint curves. We show that the group of automorphisms of the fine curve graph is isomorphic to the group of homeomorphisms of the surface, which shows that the fine curve graph is a combinatorial tool for studying the group of homeomorphisms of a surface. This work is joint with Adele Long, Dan Margalit, Anna Pham, and Claudia Yao.